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Abstract. Random three-dimensional fracture networks are generated according to various
rules. Geometrical and topological features such as the number of three-dimensional blocks, the
percolation thresholds and the cyclomatic numbers are studied with respect to fracture shapes
and densities. All the results could be successfully interpreted by means of the excluded volume.

1. Introduction

Knowledge of geometrical properties of fracture networks is crucial to the understanding
of flow and other transport processes in geological formations, both at small and large
scales; the introduction of fractures in a porous rock matrix seriously alters the macroscopic
properties of the formation. Moreover, studies of fracture geometries during the last 12–
15 yr show that naturally occurring geological fractures exist on scales ranging from a few
mm to several km (Sahimi and Yortsos, 1990). Therefore, fracture networks are likely to
influence the transports on a large range of scales. Because of their importance, fracture
networks are studied and applied in various areas such as oil and gas recovery, hydrology,
nuclear waste storage and geothermal energy exploitation.

Geological fractures can be defined as discrete discontinuities within a rock mass; these
breaks are characterized by the fact that their local aperture (defined as the local distance
between the two surfaces which limit the fracture) is significantly smaller than their lateral
extent; in other words, when they are viewed from far away, fractures can be assimilated to
surfaces of discontinuity; in most cases, these surfaces are relatively level. Fractures have
varying degrees of aperture, and may in some cases be completely closed either because of
deposition of material induced by fluid flow, or by displacements of the matrix.

An important specialized literature has been devoted to the different task of collecting
relevant data and to analyse them. It would be too lengthy to detail it and we shall content
ourselves with the recent general reference of Cowieet al (1996). However, it should
be noticed that the variety and the difficulty of getting real data stimulated the need for
generating numerical fracture network models. General reviews on modelling can be found
in chapter 7 of Sahimi (1995), Chiles (1988), Dershowitz and Einstein (1988), and Bearet
al (1993).

The earliest fracture network models were deterministic because they are easier to treat
theoretically, and because computer simulations can be done with low memory and short
CPU time. Random network models are simplified if planar three-dimensional (3D) or
linear two-dimensional (2D) fractures are assumed. Also, considering independent fracture
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location and orientations simplifies the models. When building numerical models, uniform
distributions can be used as a starting point, and the relevant observed distributions of
fracture lengths, orientation and location can easily be introduced later.

Some of the models discussed in the present work are inspired by 3D finite random disk
models used by Andersson and Dverstop (1987) and Billauxet al (1989). In these models,
fractures are represented in 3D by disks of finite radius. This assumption is supported
by experimental observations that fractures are roughly disk shaped or elliptical (Pollard
1976). On the other hand, Gertsch (1995) gives an example where the fractures are far
more complex than the simple disk picture.

For some applications, such as layered beds, hierarchical models may be of interest.
Hierarchical models can be defined by using at least two families of fractures; the fractures
of the second family are assumed to stop with a certain probability when they intersect a
fracture of the first family. A hierarchical model has been considered by Leeet al (1990),
where they extend a model introduced by Conrad and Jacquin (1975) and also by Acuna
and Yortsos (1995).

Connectivity studies of fracture networks have been performed in 3D by Charlaix
(1986). Moreover, Garborcziet al (1995) addressed the overlap of rotational ellipsoids
in 3D, and gave results relevant for fracture networks. Connectivity in 2D was considered
in Berkowitz (1995) among others. Balberg (1985) discussed universal percolation criteria
and subsequently reviewed continuum percolation (Balberg, 1987).

Intersecting surfaces in 3D, and intersecting trace lines in 2D may constitute blocks
(or areas in 2D) of the space, separated from the embedding space. Blocks in natural
fracture networks are considered by Barthelemy (1992). A model to simulate key block
size distributions is given by Mauldon (1995).

The general purpose of this work was to build general tools able to analyse the
geometrical and the topological properties of random 3D fracture networks, whatever they
are. The rest of this paper which gathers our results is organized as follows. In section 2,
general assumptions concerning the models are given, followed by a description of each
of them. In section 3, methods used to identify and characterize the fracture networks are
presented. The topology of the fracture networks is addressed in section 4; three major
sets of results are discussed, namely the partition of solid space into blocks, the percolating
properties and the cyclomatic numbers of fracture networks. The physical motivations for
the study of these quantities are briefly presented in each case.

2. Models

The medium is assumed to be spatially periodic at the large scale. A detailed description of
spatially periodic media is given in Adler (1992), and only the main characteristics of these
models are briefly repeated here. The geometrical and physical properties of the system
under investigation are invariant under the translations

Rn = n1l1+ n2l2+ n3l3 (1)

wheren = (n1, n2, n3) ∈ Z3, and wherel1, l2 and l3 define a unit cell where the system
is studied. The entire space is tiled by replicas of this unit cell, translated byRn. All the
studies presented in this paper are performed in cubic unit cells where|l1| = |l2| = |l3| = L.
The assumption of spatially periodic media is important for the computations of the transport
properties.

In order to represent a macroscopically homogeneous medium by a periodic model, one
has to set the unit cell size much larger than any finite characteristic length scale in the
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system. This restriction does not apply to model 2 described later, where one of the fracture
families of the network is made of infinite parallel planes.

In all other cases, fractures are modelled as convex, finite polygons based on an
embedding disk as shown in figure 1. The largest possible size of the polygon side is
kept smaller thanL/2, this is done by keeping the disk radius smaller thanL/4. Hence, the
situation displayed in figure 2(b) is avoided, where two homologous periodic copies of the
same fracture 2 intersect fracture 1. This is simply a weak form of the general requirement
that the unit cell size should be much larger than any local feature.

Figure 1. Convex polygons are created within a circle with
radiusR (a). Regular polygons such as hexagons (b) and
rectangles (c) can be created using appropriate fixed values
of the anglesαi .

The assumption of convex polygons is only a simplifying assumption. Real 3D fractures
are generally not planar, as discussed by Gertsch (1995). However, this assumption provides
a standard starting point for studying fracture networks. Convex polygons are fairly easy
to treat numerically and they provide objects that can be used to analyse shape and area
dependencies of geometrical and topological features in the fracture systems in a systematic
manner.

Two additional general assumptions have been introduced. First, coplanar polygons
cannot overlap. Second, only two polygons are assumed to intersect along a given line
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Figure 2. Two-dimensional illustration of fractures in a spatially periodic medium. When
Rmax < L/4 (a), P1 and P2 have only one intersection in each unit cell. In contrast, when
Rmax> L/4 (b) the polygonsP1 andP2 can intersect twice.

segment. These two assumptions are employed because of the numerical and theoretical
simplifications that they imply, but they are not expected to significantly influence the results,
as can be seen by the following argument; working with real numbers, the probability that
two polygons should have the same normal vectors by pure chance, is vanishingly small.
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Also, the probability that two different intersection line segments overlap is negligible.
Finally, two overlapping fractures can be viewed as a single one with a broader polygonal
contour; it is handled by splitting it into convex parts.

The simplest model consists of a fracture network in which all fractures are created from
disks whose centres are uniformly distributed within the unit cell. This implies that fractures
may cross the imaginary unit cell boundaries, and reach the neighbouring cells of the periodic
medium. The disk radii are chosen randomly from a uniform distributionR ∈ [0, Rmax]
whereRmax is smaller thanL/4 as explained above. A different size distribution, e.g. a
lognormal distribution may easily be introduced at a later stage.

The directions of the fractures are given in terms of the normal vectors of the embedding
planes. The normal vectors are uniformly distributed on the unit sphere. A preferred
direction can be given to the family by distributing the normal vectors uniformly in a given
solid angle centred around the average direction of the family. Again, a different distribution
may be introduced at a later stage.

The number of corners (or vertices),Nv, of each fracture is chosen at random in
the interval [3, Nmax] with a uniform distribution; the vertices are distributed on the disk
edge with anglesα1, α2, . . . , αNv which are uniformly distributed between 0 and 2π (see
figure 1(a)).

This general definition can be simplified to yield networks of regular equal sized
polygons. This is simply done by choosingNv > 3 vertices, andNv equal angles
αi = 2π/Nv as done in figure 1(b). Rectangles with ratiosa/b 6= 1, wherea and b
are smallest and largest edge sizes respectively, are also readily obtained by a proper choice
of angles (see figure 1(c)). This will be called model 1 in the following.

Other models are useful to consider briefly, though they are not systematically used
here. They introduce some special features which introduce some additional difficulties.
The second model is intended to reproduce hierarchical fracture networks, which are created
from several families of fractures which appear successively. Such a hierarchy is introduced
by generating a first familyA, and then letting a second familyB interact with the first
one as it is created. A fracturePB of the second family may stop at a fracturePA of the
first family. This generating procedure provides networks where T-shaped intersections are
common. A flag is assigned to these intersections which are labelled, and can be treated
specifically during the identification of blocks.

The third model is a special case of the second model, where an hierarchical network is
created using two or more families of fractures. A first familyA made of infinite parallel
planes is generated. Since the medium is spatially periodic, the fractures of familyA (or
A-fractures) cross the entire unit cell.

Illustrations of three fracture systems, corresponding to models 1 and 3, are given in
figure 3. Figure 3(a) corresponds to a number density of 2.29, which is close to the
percolation threshold for this system (cf table 1). In figure 3(b), the shape of the polygons
is randomized and the six vertices are randomly distributed around the circumventing disk.
In figure 3(c), one realization of model 3 is displayed; the three infinite fractures span the
unit cell of sizeL = 12R, whereR is the size of the finite fractures (hexagons).

A large variety of networks can be generated by using these three basic models, whose
systematic study would provide many novel results.

The present work is mostly focused on the methodology and to its application to the
simplest version of model 1 where all polygons have the same shape and size. A systematic
study was performed for the seven types of polygons listed in the first column of table 1;
the number of sides is ranging from 3 (triangles) to 20; the list includes squares and
rectangles.
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Figure 3. Realizations of the fracture models 1 and 3. In (a), model 1 was used to create a
network containing 495 fractures of equal shape (hexagons) in a cell with sizeL = 12R. In
(b), the network was created using hexagons with randomized angles. In (c), model 3 was used
to create the network; three infinite fractures and 100 equal sized regular hexagons were used.
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Table 1. Percolation thresholds and critical exponents for random fracture models.

Linear
Percolation Critical Linear correlation
threshold exponents correlation coefficients for

Type of object ρc(L→∞) ν coefficients forν ρc ρ′c

Equal sized
Triangles 5.36± 0.01 0.991± 0.007 −0.9996 0.9657 2.26
Equal sized
Squares 3.23± 0.01 1.029± 0.019 −0.9977 0.9583 2.28
Equal sized
Hexagons 2.36± 0.01 1.055± 0.008 −0.9998 0.9995 2.30
Equal sized
Octagons 2.09± 0.01 1.026± 0.025 −0.9986 0.9717 2.26
Equal sized
20-gons 1.89± 0.01 1.002± 0.014 −0.9995 0.9891 2.28
Equal sized
Rectangles
a/b = 1

2 4.13± 0.02 0.967± 0.01 −0.9998 0.9246 2.22
Rectangles
Unif. size dist.
a/b = 1

2 16.9± 0.2 0.87± 0.04 −0.9914 0.7725 2.24

3. Methods

The main tools needed to study the geometry and topology of the fracture network models
defined above, are briefly described in this section.

The networks will be characterized by a graph which gives all the necessary relations
and information. This graph, denoted by01, consists ofverticeswhich correspond to the
fracture polygons, andedgeswhich correspond to the intersection between polygons.01

will be used to study network percolation as a function of fracture shape, distribution and
density, as well as to characterize the topological features of the percolating components of
the networks.

The second important concept is the one of blocks, which can be introduced as follows.
The fractures create discontinuities in the solid matrix. A block is defined as a connected
component of the solid matrix. In the second part of this section, it will be shown that the
solid 3D blocks generated by the networks are identified with the help of a second graph
02, whose vertices are theelementary facesof the polygons; edges relate vertices which
correspond to two neighbouring, oradjacentelementary faces.

3.1. Fracture network

3.1.1. Intersection identification.Once the fractures have been generated by one of the
schemes described in section 2, the polygon intersections and the intersection coordinates
have to be determined. The procedure itself is geometric in character. It is not really
difficult, but it is complex and thus costly in computing time. Moreover, the intersection
test has to be performed for all pairs of polygons; hence, it involves aboutN2 tests where
N is the number of polygons.

The fracture networks are studied in a periodic medium as described in Adler (1992).
Hence, in order to find intersections between two polygons pairPα1 andPα2, periodic copies
of one of the polygons have to be considered in the 26 neighbouring unit cells. However,
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since the maximum size of the polygons is restricted to half the unit cell, they cannot cross
simultaneously two opposite sides of the cell, and only eight periodic replicas have to be
taken into account (e.g. the eight cells in contact with the front-top-left corner).

The information about the intersections is stored in the graph01 whose vertexvα
corresponds to polygonPα and edgeeβ to the intersection when it exists between two
polygonsPα1 andPα2 (α1 < α2); the edges are recursively numbered during the intersection
procedure described above. Moreover, the respective position of the unit cells is stored in
the triplet of flagsfβ = (f 1

β , f
2
β , f

3
β ); f

i
β is equal to 0 if the centresrα1 and rα2 of the

circumventing disks ofPα1 andPα2, lie in the same unit cell, and±1 if rα2 is moved to
rα2 ± li to find the intersection.

For the sake of clarity, let us consider the 2D example displayed in figure 4(a); in this
case,fβ is reduced to a doublet(f 1

β , f
2
β ). e1 corresponds to the intersection between the

two fracturesP1 (or v1) andP3 (or v3); the fact thatP1 andP3 intersect is stored as well as
the intersection coordinates; the doublet of flagsf1 relative toe1 is obviously equal to (0,0).
The fracturesP9 (or v9) andP1 (or v1) also intersect ate11; the doublet of flagsf11 relative
to e11 is now equal to(−1, 0) according to the definition given in the previous paragraph.

Finally, the graph01 which corresponds to the network displayed in figure 4(a), is
given in figure 4(b).

3.1.2. Connected and percolating components of01. Connectivity of01 is equivalent to
the connectivity of the fracture networks which is one of the most important features we
want to study. Two fracturesPi andPj are said to belong to the same connected component
if a path exists in01 from Pi to Pj . In figure 4(b), the network consists of two connected
components denoted 1 and 2.

The connected components of01 are derived by a pseudo-diffusion algorithm,
PERCOLA, described in Thovertet al (1993). It can be briefly described as follows.
Define a discrete vectorM(i, t) with values 0 or 1 for each polygonPi at timet ; setM(i, t)
to 0 at t = 0, except for one polygonPk. At each time step,M(i, t + 1) is set to 1 for all
the polygons which are neighbours of a polygon,Pj , whereM(j, t) = 1 (figure 4(c)). After
a certain number of time steps, the set{i : M(i, t/k) = 1} is invariant, and corresponds to
one connected component of01. This process can be repeated starting with a vertex which
does not belong to the previous components until the set01 is exhausted.

The connected components of01 can be classified into percolating and non-percolating
components. In a spatially periodic medium, a connected component is said to be percolating
if it connects two opposite faces of the parallelepipedic unit cell, and if it contains two
homologous fractures, i.e. two fractures with the same coordinates, moduloRn. Component
1 in figure 4(b) provides an example of a percolating component.

The diffusion algorithm PERCOLA can also be used to find the percolating connected
components (cf Thovertet al 1993).

3.2. Solid blocks

As mentioned in the introduction of this section, the 3D solid blocks induced by the fracture
networks are derived from a graph02 set up by the elementary faces of each polygon.

The physical idea which lies behind the algorithm, is relatively simple. A solid block
is limited by several plane faces which are located within the construction polygons; to
recognize such a block requires at least two steps, namely the recognition of the plane faces
and the identification of faces which are neighbour one to another. A simple example is pro-
vided by a cube limited by six faces; each face is the neighbour of four others. Suppose that
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Figure 4. The graphs01 (b) for a 2D fracture network (a). The fracturePα corresponds to the
vertex vα in the graph, and edgeseβ connect vertices if the corresponding fractures intersect.
01 has two connected components; 1 percolates through the cell, and 2 does not. Periodic
conditions are used for component 1;v1 is connected tov3 in the unit cell (edgee1), and tov9

through the unit cell wall (edge 11). The pseudo-diffusion algorithm is illustrated in (c), with
k = 5. M(i, t) is set to 1 at the timet indicated by the numbers in the figure. The vertices (• )
belong to the connected component containingv5. The vertices (◦ ) remain atM = 0 and thus
belong to another connected component.

the faces are translated far away one from another; since the faces do not intersect anymore,
they are not neighbours and thus they do not bound a solid cube anymore. A more subtle ex-
ample is the initial cube, but with one face suppressed; here again, the remaining five faces
do not bound a solid block. The following development is meant to address all these cases.
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Figure 4. (Continued)

3.2.1. Elementary areas of the polygons.Elementary areas of the polygons are defined as
the areas bounded by polygon edges and fractures intersections (cf figure 5); note that the
elementary areas need not be simply connected, asA2 in figure 5(b). An elementary face of
a polygon is defined as an elementary area together with an oriented normal vectorn to the
polygon plane5; the orientation is used to distinguish the two opposite sides of a fracture.

In order to find these areas, define the graph denoted by0p, which consists ofn vertices
V0p = {vi, i = 1, 2, . . . , n} andm edgesE0p = {ej ; j = 1, 2, . . . , m}. The vertices of
0p are given by the polygon vertices, the intersection end points, and the points where two
intersection lines intersect inside the polygon. Then, oriented edges, denoted aseklj , where
the superscriptkl indicates that the edge is oriented from vertexk to vertexl, are defined
using an arbitrary orientation. The graph0p is simple since only one edge connects two
vertices, and no vertex is connected to itself, but the graph is not necessarily connected.

The first step towards finding the elementary areas of a polygon, is to reduce the graph
0p to a graph0′p without dangling ends. All the edges which connect a vertexvm to only
one vertexvn, are removed. This procedure is repeated until no progress can be made
anymore and the result is displayed in figure 5(b). In the next step, all the connected
components of0′p are identified. In figure 5(b), the graph0′p consists of two connected
components, one made up by the verticesv21, v22 and v23, and their edges, and a second
made up by the rest of the vertices and their edges. The components are identified using a
graph diffusion algorithm, such as the one given by Prince (1994).

The elementary areas in a polygon are bounded by one or moreminimal cyclesof 0′p.
As usual, a cycle of0′p denotes a chain of vertices where the first and last vertex is the
same. A minimal cycle is a cycle of0′p which cannot be split into smaller cycles, such
as the cycle defined by the verticesv21, v22 andv23 in figure 5(b). As a counter example,
consider the bounding edges of the whole polygon (i.e.v1–v2–· · ·–v6) in the same figure,
which do not constitute a minimal cycle, since this cycle contains other cycles of lesser
extent. Note that our definition is a metric one, introduced to identify the smallest connected
fracture areas.

In order to find the elementary areas, all the minimal cycles for each of the components
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Figure 5. Elementary areas inside a fracture(v1, v2, . . . , v6) in the fracture plane5 with normal
vectorn. In (a), the graph0p is composed by nodes which are polygon vertices, intersection
vertices or points inside the polygon where two intersection lines intersect. The edges of0p are
parts of the polygon edges or intersection lines that connect the vertices. In (b), the graph0p is
reduced to0′p without dangling ends; the elementary areasA1 to A5 bounded by the elementary
cyclesCi0′p can be identified.

of 0′p are needed. This is done by walking along the edges and always turning to the
same direction (right or left) at a vertex where two edges meet. In the course of this
cycle identification, a positive direction is assigned to the cycles, i.e. they are oriented
counter clockwise according to the normal vector with positiveZ-coordinate of the polygon.
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The orientation can be given in an edge vector notationC0′p = {dj : j = 1, 2, . . . , m}
wheredj is +1 if edgeeklj is visited from vertexk to vertex l, −1 if it is visited in the
opposite direction and 0 otherwise. The oriented cycleC10

′
p in figure 5(b) is denoted by

{1, 1,−1, 1, 0, 0, . . . ,0}.
The elementary areas are now given by the bounding minimal cycles. In figure 5(b) the

areaA2 is given byC20
′
p − C30

′
p. Hence, it is necessary to determine the cycles which

may lie inside other cycles. Cauchy’s integral formula (Morse and Feshbach, 1953), valid
for functions analytic on and inside a closed contourC

f (z0) = 1

2πi

∫
C

f (z)

z − z0
dz (2)

implies that if a pointp lies in the interior of a closed contourC, the sum of the (oriented)
anglesαi between(vi − p) and (vi+1 − p) is 2π . The sum is zero if the point lies in the
exterior ofC.

The area bounded by one contour can be found using Green’s theorem∫
R

∫ (
∂Q

∂x
− ∂P
∂y

)
dx dy =

∫
C

(P dx +Q dy) (3)

whereR is a simple connected area bounded by a cycleC. With P = −y/2 andQ = x/2,
it yields

A =
∫
R

∫
dx dy = 1

2

∫
C

(x dy − y dx). (4)

Now, the numerical value of each elementary area is given by the proper sum of
contour integrals taken over the minimal cycles which bound it. For instance, the areaA2

in figure 5(b) is derived as

A2 = 1
2

∫
C20′p

(x dy − y dx)− 1
2

∫
C30′p

(x dy − y dx). (5)

3.2.2. Building of the fracture face graph02. Once the elementary areas have been
identified for each polygon in the fracture network, the graph02 can be built and used
later to find the blocks generated by the network. As mentioned above, the verticesV02

of 02 correspond to the elementary areas of a polygon, together with a sign of the normal
vector. The edgesE02 of 02, are set up between two vertices if the vertex pair satisfies
one of the three following conditions.

The first possibility for two vertices to be connected, is sharing an original polygon
edge. This occurs if two verticesvi andvj of 02 are the two faces of the same elementary
area, which has an original polygon edge in its bounding cycle. In figure 6, an example is
provided by the two vertices,ν+12 andν−12 (in b) created by the same areaA12, (in a) with +
or − denoting positive or negative normal vector. This area has one edge from the original
polygon 1.

Second, two verticesvi and vj of 02 are connected if they lie in the same plane and
share an intersection edge where no other vertex connects. In figure 6, this is verified
by the verticesν+11 and ν+12 (in b) created from the elementary areasA11 andA12, (in a)
and both with normal vector+n1. This case occurs only for T-shaped intersections. This
information is derived and stored when the networks are created.

Finally, two faces can be adjacent in a less trivial way which requires three tests.
Consider figure 7(a), where four elementary areas of two plane polygons are drawn. The
first obvious condition that has to be fulfilled by the two elementary faces denoteda+ and
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Figure 6. Adjacency criteria. (b) is the 2D cross-section of (a) in the planeγ . All the
elementary areas, such asA11 andA12, correspond to two vertices, one for the positive and one
for the negative normal vector of the area.

b+ is that the two faces must share an edge. Moreover, the vectors along the common
edge oriented in the same way as the cycles bounding the faces, must point in opposite
directions; hence,

−νa+ = νb+ . (6)

The third condition requires that

(nas × νas ) · nbs > 0 (7)

wheres indicates the sign±.
This allows to distinguish the facesb+ and c−, which satisfy the two first criteria

together witha+. In figure 7(b), na+ × νa+ andnb+ point in the same direction, and the
three conditions are fulfilled for the elementary facesa+ andb+.
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Figure 7. Illustration of the adjacency criterion 3. (b) is a vertical cross-section of (a). Four
elementary areas from two polygons 1 and 2 are displayed, and three of them are denoteda, b,
c. Each elementary area has two normal vectors associated with its two faces; for instance,b

together withnb+ , defines the elementary faceb+. The cycles Cb+ and Ca+ are oriented counter
clockwise around their respective normal vectors.vb+ andva+ are vectors along the common
edge ofa+ andb+, oriented along their respective cycles. The vectorna+ × va+ is displayed
in (b); it points from the common edge ofa+ andb+, into the elementary facea+. vb+ and
va− point into the plane (⊗) whereasva− points out of the plane(�). The elementary faceb+
is adjacent toa+ becausevb+ andva+ point in opposite directions andnb+ · (na+ × va+ ) > 0.
No other elementary face in the figure is adjacent toa+.

3.2.3. Identification of blocks created by fracture networks.The connected components
of 02 are identified using the same approach as described above for01. Blocks created
in a fracture network generated from planar, finite-sized objects are in general complex
geometrical forms which can be classified into two main groups. The first one consists
of blocks bounded by finite connected components of02. Using Gauss’ theorem (see e.g.
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Adler, 1992), the volume enclosed by a component can be written as∫
A

r · n dA =
∫
V

∇ · r dv = 3V =
nk∑
i=1

ri · niAi (8)

wherenk is the number of vertices (elementary faces) in a componentk, Ai is their area,
ri is a point in the facei andni its normal vector.

V derived by equation (8) is zero if the component does not surround any volume; in
such a component, both faces of any elementary area are always present together, and with
opposite normal vectors. The simplest example is provided by the two opposite faces of a
single isolated fracture (seeC1 andC2 in figure 8).

Figure 8. Volumes surrounded by the connected components of02. The componentsC1 and
C2 have zero volumes. The componentsC3, C4 andC6 enclose finite solid blocks.V derived
from (8) is negative.C5 encompassesC3 andC4, with V positive. The shaded area is an infinite
block, bounded byC8 andC9. These components, together with the additional faceA, enclose
the fraction of the unit cell belonging to the infinite block.

If the volume,V , in equation (8) is not zero, the connected component actually surrounds
a solid volume. Such components may also contain pairs of homologous faces, but these
pairs do not contribute to the volume.V can be either positive or negative. A finite
connected component surrounding a solid volume, like the inner envelopesC3, C4 or C6 in
figure 8, has always an outer counterpart, possibly infinite, which may encompass several
disconnected solid volumes, likeC5 in the figure. As a consequence of the third criterion in
section 3.2.3, the normal vectors of the inner envelopes are oriented inwards, and (8) yields
a negative volume. Therefore, the finite solid blocks are identified with the finite connected
components of02 for which (8) yields a negative volume.

The second group of blocks is unbounded. They are infinite but they can be characterized
by their volume fraction within the unit cell. One way of doing this could be to supplement
their envelope, which may consist of one or several infinite components of02, with faces
along the boundaries of the unit cell (see figure 8). Equation (8) could then be applied to
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the resulting finite connected component, and yield the volume of the infinite block within
the unit cell.

A last special case occurs when a block lies inside another block. This situation is
analogous in 2D to the area inside another area case for the elementary areas discussed
above. To address this situation, the inner and outer blocks must be first determined.
Afterwards, the volume is simply obtained by subtracting the volume of the inner block
from the volume of the outer one. Note that the total number of blocks defined by a network
is not affected by inner blocks. Two surfaces which define a large block containing an inner
block, still define two blocks, as they would if the small one was located outside the large
one. To decide whether or not a blockB1 lies inside anotherB2, we first choose two points,
onep1 on the surface ofB1, and one at infinity (e.g. randomly on a large sphere). Then,
we move along a line defined fromp1 to p2, and count how many times a surface ofB2 is
crossed. If it is crossed an odd number of times,B1 lies insideB2.

4. Topology

4.1. Partition of the solid space by the fracture network

In this section, the partition of a solid space into blocks due to the existence of a fracture
network is studied. As mentioned earlier, a fracture network divides the solid space into
separated regions or blocks. Such a knowledge is important for several reasons. First, if flow
and transport processes in a fractured porous media are considered, a two-scale problem can
be set up, since flow occurs within the porous blocks themselves and through the fracture
network. Second, another important application of block characterization is provided by
the estimation of keyblocks in mechanical rock engineering. A keyblock is defined as a
finite, undeformable block which can be translated towards (open) space without displacing
adjacent rock, i.e. a removable block (Mauldon, 1995).

The number,Nb, of finite blocks in a fracture network depends upon the number density
of fractures, as well as the orientations, sizes and shapes of the fractures. It has been studied
in a systematic way for systems of equal-sized regular polygons.

Nb was calculated as a function of the fracture number density,ρ = Nfr/L3, for squares
and hexagons with a cell sizeL = 2.5D and for octagons withL = 2D (the fracture diameter
D = 2R is taken as length unit, i.e.ρ is the number of fractures per volumeD3). The
average number of created blocks,Nb or the density of blocksρb = Nb/L−3 and its standard
deviationσ(ρb) were measured on 80 realizations for each fracture density. The results are
displayed in figure 9(a). As expected,Nb increases withρ. A regression analysis of ln(ρb)
versus ln(ρ) yields

ρb = kρα (9)

where the exponentα varies between 3.5 and 3.9. For identical fracture densities, polygons
with a larger number of verticesNv, always yield a larger block density, even though the
exponent in (9) decreases slightly withNv.

The influence of the fracture shape was further investigated by extending the range ofNv,
for fixed values of the fracture density.Nb was simulated as a function of the numberNv,
of polygon edges for regular triangles, squares, pentagons, hexagons, octagons, 12-gons and
16-gons. This was done forL = 2D with Nfr = 56, 72 and 96 fractures, or number densities
ρ = 7, 9 and 12. The results are displayed in figure 9(b). They are based on 100 realizations
for each polygon-type and density. The density of blocks is again seen to increase asNv
increases; it tends towards a limit as the polygons become more and more circular.
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Figure 9. (a) Density of blocks in a fracture network,ρb versus number density of fracturesρ
for equal-sized hexagons (◦ ), squares (×) and octagons (+). The insert shows the results on
a linear scale, whereas the results on log–log scale are given in the large figure. The straight
lines in the log–log plot are the power-law fits (9). The circular limits (• ) are obtained from
equation (11). (b) Density of blocksρb in fracture networks created by regular polygons with
Nv edges, for three different fracture densitiesρ = 7 (×), 9 (◦ ), and 12 (∗). The small figure
shows thatρb tends to a limit asNv →∞, or equivalently as the polygon shape tends towards
a circular disk. In the large figure,ρb is plotted versus the reduced polygon areaAp/Ad , on a
log–log scale. The straight lines are the scaling law (11).

This dependency ofρb uponNv can be investigated further by taking into account the
area of the regular polygonAp which may be expressed as

Ap = 1
2R

2Nv sin

(
2π

Nv

)
= Nv

2π
sin

(
2π

Nv

)
Ad (10)
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whereR is the radius of the circumventing disk andAd its area. The log–log plot ofρb as a
function ofAp/Ad in figure 9(b) yields an approximate straight line, with scaling exponents
β = 4.124, 4.064 and 3.846 and correlation coefficients 0.9997, 0.9991 and 0.9983 for the
three densitiesρ = 7, 9 and 12, respectively. Thus, the number of blocks follows the
approximate scaling law

ρb ∝
(
Nv

2π
sin

(
2π

Nv

))β
=
(
Ap

Ad

)β
(11)

with β ≈ 4. In the limit of circular fractures(Nv → ∞, Ap/Ad → 1), these fits yield
ρb = 1.73, 4.13 and 10.9 forρ = 7, 9 and 12, respectively. In turn, this givesα = 3.41,
k = 0.002 26 andr = 0.999 97 in equation (9).

The formation of a polyhedron requires the intersection of a few fractures. The
intersection ofN independent surfaces is likely to be proportional to the product of their
area. Since the tetrahedron is the polyhedron with the smallest number of faces, the number
of tetrahedron should simply be proportional toA4

p, in agreement with (11).
Furthermore, for moderate fracture density, one might expect the number of quadruplets

of mutually intersecting fractures to scale asρ4. However, the exponentα in equation (9)
depends on the fracture shape. This can be rationalized as follows.

Balberg et al (1984) introduced the so-called excluded volume,Vex, to quantify the
average numberNI of intersections per object in a continuous system. Sinceρ is the
number of fracture per volumeD3,

NI = ρ Vex

D3
. (12)

Accordingly, the densityρI of the fracture intersections is

ρI = ρ2Vex

D3
. (13)

Let the densityρ ′ (and similarlyρ ′b, ρ
′
I , . . .) be the number of fracture per volumeVex

ρ ′ = ρ Vex

D3
. (14)

Then

ρ ′I = ρ ′2. (15)

For moderate fracture densities, one may infer the densitiesρ ′T of triplets andρ ′Q of
quadruplets of mutually intersecting fractures

ρ ′T ∝ ρ ′3 ρ ′Q ∝ ρ ′4. (16)

These relations hold for any fracture shape because this feature has been accounted for,
throughVex, in the definition of the densityρ ′.

All the data from figures 9(a) and (b) are recast in these terms in figure 10.Vex for
polygons was modelled as (Sahimi, 1995)

Vex = 1
2ApPp (17)

wherePp is the polygon perimeter. All the data collapse onto a single master curve, which
is fitted by the power law

ρ ′b = 482× 10−6ρ ′3.79 r = 0.996. (18)

The exponent 3.79 is indeed very close to the exponent 4 forρ ′Q. This means that the model
(17) for Vex is successful not only to unify the densityρ ′Q for all particle shapes, but also
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Figure 10. Block densityρ′b versus fracture densityρ′ for regular polygons with 3–16 vertices.
The line is the least square fit (18).

to render the probability of a quadruplet of mutually intersecting fractures to form a closed
block independent of the fracture shape.

Finally, it might be interesting to quantify the volume density of finite blocks, i.e. their
volume fractionfb. This parameter could prove useful for rock-mechanical purposes, for
example as a damage index. Some results are presented in figure 11 for regular octagons in
a cell withL = 2D. Clearly, two regions can be distinguished. For low fracture densities,
a power-law relatesρ ′ andfb. A least square fit yields

fb = 49× 10−6ρ ′3.10 r = 0.98, ρ ′ 6 10, fb 6 0.1. (19a)

The initial growth of fb is roughly cubic. Then, a transition occurs andfb is a linear
function of ρ ′

fb = −0.20+ 0.0272ρ ′ r = 0.999, 106 ρ ′ 6 14, 0.16 fb 6 0.21. (19b)

Ultimately, fb is expected to reach one for a finite fracture density.

4.2. Topology of the fracture space

4.2.1. Percolation through a random fracture network.The percolating properties of a
random fracture network are important for the transport properties. If the network does not
percolate, the network permeability is necessarily equal to zero. Moreover, close to the
percolation threshold, permeability is likely to obey universal power laws.

General. A review of continuum percolation is given by Balberg (1987), where
important concepts such asVex are discussed. In Berkowitz (1995) and Berkowitz and
Balberg (1993), application of percolation theory to fracture networks is reviewed.

For site or bond percolation on lattice systems, the main parameter is the probabilityp

that a site is occupied, or a bond open. For continuum systems, where no lattice is involved,



1434 O Huseby et al

Figure 11. Volume fractionfb of finite blocks in a network of octagonal fractures versus fracture
densityρ′. The curves are the least square fits (19a) and (19b).

another parameter is usually used instead of the occupation probability, namely the number,
NI , of intersections, or bonds, per object. As a trivial consequence of (12) and (14),

NI = ρ ′. (20)

Using continuum percolation simulations for various particle shapes, Balberget al
(1984) and Balberg (1985) established general percolation threshold criteria for 2D and
3D systems. They are valid for isotropic systems consisting of convex overlapping objects
and read as

3.2< ρ ′c < 4.5 (2D)

0.7< ρ ′c < 2.8 (3D).
(21)

Later, our results will be discussed in view of these limits, and the expression of the
Vex of equal-sized disks is needed. In agreement with (17), it is given by Balberg (1987) as

Vex = π2R3. (22)

To estimate the percolation thresholds for the random model described in section 2, the
classical finite-size scaling method described in Stauffer and Aharony (1994) is used. The
percolating system is studied for various cell sizesL. For given values ofL and ρ, the
probability 5L(ρ) of having a percolating cluster is derived from numerous realizations
of the system. Then, the numerical function is used to estimateρLc (the value for which
5L(ρ) = 1

2) and an estimate of the width1L of the transition region of5L(ρ).
OnceρLc and1L have been evaluated for several values ofL, the asymptotic value

ρLc for infinite systemsρc can be derived from the two scaling relations (Fischer, 1971,
Charlaix, 1986)

ρLc − ρc ∝ L−1/v (23)
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and

1L ∝ L−1/v (24)

whenL→∞.
In our estimations ofρLc and1L, the data for5L(ρ) were fitted with an error function

of the form (Stauffer and Aharony 1994, Reynoldset al 1980)

5L(ρ) = 1√
2π

∫ ρ

−∞

1

1L

exp

{
− (ξ − ρLc)

2

2(1L)2

}
dξ (25)

whereρLc and1L are fit parameters.
Recall from section 3 that the method used to decide upon whether or not a percolating

component is present in the fracture network, consists of first establishing the graph01 where
the polygons are vertices, and where edges are set up if two polygons intersect. Then, a
diffusion algorithm gives the connected and percolating components. A disadvantage of this
method is the need of keeping the number of objects below the limits set by the computer
memory. Also, the computer time increases proportionally to the square of the number of
objectsN , and this sets another limit on the tractable number of objects. Hence,N is fairly
low, about 1200 for an IBM RISC 6000/220 with 32 Mbytes of internal memory. This is
the reason why, in our calculations,L (measured in units of the disk diameter) was kept
below 8. Despite the small cell sizes, the scaling laws (equations (23) and (24)) are well
verified, which justifies the extrapolations ofρc at L→∞.

The polygons were created, and intersections identified as described in sections 2 and
3. Percolation was searched in all possible directions (x, y and z). Periodic boundary
conditions were applied to the 3D graph during this search; this means that a cluster must
touch two opposite faces of the unit cell, and in addition contain fractures intersecting one
another across the faces.

Results. In the following, results obtained for regular equal-sized triangles, squares,
hexagons, octagons, 20-gons and two sorts of rectangles are given. The rectangles have an
aspect ratioa/b = 1

2; the size of the first sort is constant, while the second one is inscribed
within circles whose radii,R, are uniformly distributed between 0 andRmax. 5L is studied
for four values ofL for each polygon type, except for hexagons, where fiveL values were
used.

An example of the plots of the estimated5L(ρ) data points is given in figure 12,
together with the fitted error functions. The trial form (25) of5L(ρ) was found satisfactory
in all cases. For the data in figure 12, the root mean square deviation of the numerical data
from the fitted curves does not exceed 0.02 for all sample sizes. The uncertainties of the
determinations ofρLc and1L are 0.02 and 0.03, respectively. Similar values apply for all
polygon shapes. Plots of ln(1L) versus ln(L/D) were used to obtain the critical exponent
v; results and estimated errors are given in table 1. The various polygons are expected to
belong to the same universality class, andv was expected to be the same in all cases. The
values were found in the rangev = 1.011± 0.044.

Plots of ρLc versus1L were extrapolated for1L → 0 to find ρc, whose values are
given in table 1, together with the linear correlation coefficients.

Discussion. Charlaix (1986) and Garborcziet al (1995) have obtained results for
randomly distributed, equal-sized disks in 3D. In the latter reference, the disk results are
available as the oblate limiting case of rotational ellipsoids. Since regular polygons were
used rather than disks, our results need to be related to disk results, before a necessary
comparison can be done.

If the values ofρc are compared for the various polygons, they seem to converge towards
a limit as the number of vertices increases. This behaviour is made clear by the plot ofρc
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Figure 12. Probability of percolation versus number density of fractures in fracture networks
created by equal sized, regular hexagons. The probability curves are simulated for sample sizes
L/D = 2 (◦ ), 3 (+), 4 (∗), 6 (×) and 8 (• ). The full lines are the fitted error functions.

versus the ratioAd/Ap (cf equation (10)) in figure 13. The linear relation which is obtained
suggests that the circular disk limit can be obtained by extrapolatingρc for Ad/Ap = 1.
For disks, this yields

ρc = 1.85± 0.01. (26)

Our results, as displayed in figure 13, fall between the estimations of Charlaix (1986) and
Garborcziet al (1995), which are equal to 1.48 and 2.42, respectively.

This discrepancy requires some discussion. Garborcziet al (1995) did not use finite-
size scaling methods. They used five realizations and recorded the number of particles at
percolation. This is done for a system size which corresponds toL/D = 20.8. Therefore
our results are not directly comparable with theirs, and this might explain the difference.

Charlaix (1986) used a finite scaling method, together with a larger span of system sizes
than us, which should yield better estimates. However, our data plotted in figure 13 seem
to be consistent, and to yield an unambiguous estimate for disks. Another point is that our
definition of percolation involves the three possible directions, whereas Charlaix checked
only in one direction. The two definitions are equivalent for infinite systems, and lower
thresholds are expected in finite ones with our looser condition.

Our results can also be analysed in terms of the average number of intersections per
fractureρ ′. The critical valuesρ ′c deduced fromρc by equation (14) are listed in table 1.
For regular polygons withNv vertices,Vex (17) may be expressed as

Vex/D
3 = π2

8

(
Nv

π

)2

cos

(
π

Nv

)
sin2

(
π

Nv

)
. (27)

For equal-sized rectangles with aspect ratio1
2, one obtains

Vex/D
3 = 6

5
√

5
. (28a)
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Figure 13. Percolation thresholdsρc for regular polygons (◦ ) and rectangles witha/b = 0.5
(+) versus(Ad/Ap − 1). The linear fit (—· —) yieldsρc = 1.846± 0.015 for disks. The data
from Charlaix (1986) (• ) and Garborcziet al (1995) (×) are given for a comparison.

For rectangles with aspect ratio12 and a sizeR uniformly distributed in [0, Rmax], Vex was
averaged over the range ofR, which yields

Vex/D
3 = 3

10
√

5
. (28b)

The resulting values ofρ ′c listed in table 1 are remarkably constant. For all the fracture
networks, including the cases of anisotropic (rectangular) and polydisperse polygons,ρ ′c lies
in the range

ρ ′c = 2.26± 0.04. (29)

This result suggests to recast the data forρLc and1L in a similar way. By analogy
with (14), define

ρ ′LC =
Vex

D3
ρLc, 1′L =

Vex

D3
1L. (30)

All the data can be recast in these terms in figure 14 and within deviations generally smaller
than±5% they can be gathered around a single curve. A linear fit yields the extrapolation

ρ ′L = 2.28 (L→∞). (31)

In figure 14 which has been drawn at a large scale, small but systematic deviations occur;
all data for triangles fall below, all data for squares above etc. Moreover, the deviations
are smaller for largerNv, when the polygon is close to a disk. The deviations are due
to the approximate nature ofVex in equation (17). Since our approximation gets better as
the polygons approach circles, the points fall closer to the line for polygons with largeNv.
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Figure 14. ρ′Lc versus1′L plotted for networks of triangles (◦ ), squares (∗), hexagons (⊕),
octagons (×) and 20-gons (• ). The full line is a least square fit for the regular polygons. (~)
are rectangles with aspect ratioa/b = 0.5; (⊗) are polydisperse rectangles with aspect ratio
a/b = 0.5.

Nevertheless, the approximate formula forVex is quite successful for the regular polygons
as well as for anisotropic and polydispersed ones.

In terms ofρ ′, the percolation thresholds obtained for disks by Charlaix (1986) and
Garborczi et al (1995) are equal toρ ′c = 1.8 and 3.0, respectively. Robinson (1983)
obtainedρ ′c = 2.09 for the percolation of randomly centred unit squares oriented along
three orthogonal directions.

Finally, note that our results agree with the limits set up by Balberg (1985)
(equation (21)) for 3D systems. This is also true for the results obtained by Charlaix
(1986), whereas the results from Garborcziet al fall outside these limits.

4.2.2. Betti numbers of fracture networks.The topological characterization of surfaces and
solids has proven useful in various fields of physics, such as metallurgy and geological
porous media. In the latter case, the 3D pore space has been characterized with the help
of topological concepts by Thovertet al (1993), MacDonaldet al (1986a, b) and by Lin
and Cohen (1982) among others. The review of topology applied to metallurgy, written by
Barret and Yust (1970), gives the main concepts and theorems useful for fracture networks.

The main topic addressed in this section is the determination of independent flow paths
in fracture networks by using the topological information available from the graphs01 and
02 defined and described in section 3. If flow paths in a fracture network can be described
by curves connecting the centres of the fractures in a network, and if these curves connect all
the centres of intersecting fractures, the physical situation is equivalent to the one introduced
and used by Cacaset al (1990).
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Because of its definition (cf section 3),01 can be used to find the independent flow
paths of the fracture network. In view of this, some of the topological concepts described
by Barret and Yust (1970) will be used; the zeroth Betti numberβ0(0) gives the number of
connected components of a graph0. The first Betti number of a graph0 is the number of
independent cycles of the graph, and is given by the relationβ1(0) = m(0)−n(0)+β0(0),
wherem(0) is the number of edges of0 andn(0) is the number of vertices of0. The first
Betti number is also called the cyclomatic number or genus.

The two Betti numbers are readily obtained for the graph01. As explained in section 3,
the connected components of01 are found using a pseudo diffusion routine; once they are
identified, they can be counted, and the number of connected components givesβ0(01).
Sincen(01) andm(01) are the number of vertices (polygons) and edges (intersections), the
first Betti number of01 may be expressed as

β1(01) = m(01)− n(01)+ β0(01). (32)

The cyclomatic number of the graph01 is equal to the number of independent
cycles. However, it can be argued that some of the cycles contributing to this sum do
not correspond to physical flow cycles in a fracture network. To explain this, consider
figure 15, where (a) and (b) display configurations with five intersecting fractures, and
(c) and (d) the corresponding parts of01. If a point where three fractures intersect is
denoted atriple point, the difference between (a) and (b) is that in (a) the fractures
constitute a triple point whereas in (b) no triple point exists. Note that in graph01,
the configurations (a) and (b) give the same structure, and that both configurations are
therefore counted as a cycle. However, if a continuous deformation is considered (or
deformation retract) of a curve circumventing the triple point in (a), and the punctured
hole in (b), the curve can be deformed to a point in (a) but not in (b). This means that
only case (b) corresponds to an actual flow cycle. Therefore, an alternative cyclomatic
number γ1(01) is introduced, from which cycles corresponding to triple points are
removed.

However, special care has to be taken with triple points involved in the bounding
surfaces of blocks. Consider for example the tetrahedron block in figure 15(e). A cycle of
three faces exists around each of four triple points, but these cycles are not independent,
as shown by the corresponding graph in figure 15(f ). More generally, a block withp
vertices containsp − 1 independent cycles of01. Thus, the total contribution of the
blocks to β1 is their total number of vertices minus one per block. Accordingly,γ1 is
defined as

γ1 = β1−NT +Nb (33)

whereNT is the number of triple points in the fracture network andNb the number of
blocks. This quantity, which models the number of independent flow paths in the network,
is available when the number of polygons, intersections, triple points, blocks and connected
components of01 are known.

Finally, volumetric cyclomatic numbers are defined by

β̄1 =
(
D

L

)3

β1 γ̄1 =
(
D

L

)3

γ1. (34)

These parameters are intrinsic cycle densities, whereasβ1 and γ1 are absolute number of
cycles in the cell with sizeL.

Cyclomatic numbers as functions of polygon shape.The cyclomatic numbersβ0, β1(01)

andγ1(01) were calculated as functions of the numberNv of vertices in regular polygons in
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Figure 15. Two situations involving five fractures with (a) or without (b) triple points. The
corresponding graphs are identical (c, d). Tetrahedric block (e) and its graph (f ).

a cell of sizeL = 2D. Three number densitiesρ = 7, 9 and 12 were used, corresponding
to 56, 72 and 96 fractures. The results forβ̄1(01) and for γ̄1(01) are displayed in figure 16
together with semi-analytic curves derived as follows. Qualitatively,β̄1(01) and γ̄1(01) are
seen to converge towards a limit whenNv tends to infinity i.e. when the polygon shape
becomes circular, as one should expect. Moreover,γ̄1(01) converges much faster than
β1(01).

Let us explain the behaviour of̄β1(01) defined by (32). Since in01 fractures are replaced
by vertices and intersections by edges,n is equal to the number of fractures in the network,
i.e.ρL3/D3. Now, the number of edges in01 is half the number of intersections per polygon
times the number of polygons. Accordingly,m(01) is given by 1

2ρ
′n(01) = 1

2ρ
′ρL3/D3.

Therefore, the cyclomatic number of the network may be expressed as

β1(01) =
(
L

D

)3

ρ

(
ρ ′

2
− 1

)
+ β0. (35)
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Figure 16. Volumetric cyclomatic numbers̄β1 (——) and γ̄1 (— · —) for networks of regular
polygonal fractures with densitiesρ = 7 (+), 9 (◦ ) and 12 (• ), as functions of the number of
polygon verticesNv . The curves are the predictions (36) and (38).

Sinceβ0 is small compared withβ1 when ρ is larger than 3, the cycle densitȳβ1 is
given by

β̄1 =
(
ρ ′

2
− 1

)
ρ. (36)

This theoretical prediction is plotted in figure 16 together with the numerical data. The
model (17) was used again forVex, and it is as successful here as it was for predicting block
numbers or percolation threshold.

Similar predictions can be established forγ1, by using estimates of the numbersNT of
triple points andNb of blocks which appear in equation (33). For a given fracture density,
the density of blocks was found to obey the power law (11) with an exponent close to 4.
This is again verified for the data, with prefactors 1.5, 3.5 and 9.10, exponentsα1 = 3.994,
4.068 and 3.746, and correlation coefficients 0.9998, 0.9986 and 0.9986, forρ = 7, 9 and
12, respectively.

Similarly, the number of triple points for a given densityρ is expected to scale as the
cube of the fracture area. This was also checked on the data, which yield

ρT ∝
(
Ad

Ap

)βT
(37)

with prefactors equal to 10.2, 21.8 and 52.9, exponents equal to 2.87, 2.96 and 2.97 and
correlation coefficients equal to 0.9998, 0.9998 and 0.9999 forρ = 7, 9 and 12, respectively.

Now, from (33) and (34),̄γ1 reads

γ̄1 = β̄1− ρT + ρb. (38)
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The estimation of̄γ1 using (36) with (27) and the two fits above forρT andρb is plotted
in figure 16. Again, an excellent agreement with the numerical data is observed.

Betti numbers versus number density of fractures.Finally, it is possible to recast the
volumetric cyclomatic numbers as was done for the other densities (see (14))

β ′1 =
Vex

D3
β̄1 γ ′1 =

Vex

D3
γ̄1. (39)

These quantities represent numbers of cycles in01 per excluded volumeVex. Equivalently,
from (33, 34, 36, 39)

γ ′1 =
(
ρ ′

2
− 1

)
ρ ′ − ρ ′T + ρ ′b

β ′1 =
(
ρ ′

2
− 1

)
ρ ′.

(40)

It was shown in the previous paragraphs thatρ ′b can be deduced fromρ ′ (see (18)). The
triple point densityρ ′T could also be fitted by a power law in fair agreement with (16)

ρ ′T = 0.0117ρ ′3.19 r = 0.9985. (41)

Accordingly, (40) can be recast into

γ ′1 =
(
ρ ′

2
− 1

)
ρ ′ − 0.0117ρ ′3.19+ 482 10−6ρ ′3.79. (42)

Hence, all the influence of the fracture geometry on the Betti numbers is accounted for
through the volumeVex in the definition of the densities. Only the two last terms of (42)
are numerical fits (see figure 11).

Figure 17. Volumetric cyclomatic numbersβ ′1 (×) and γ ′1 (• ) versus fracture densityρ′ for
networks of regular polygonal fractures with 3–16 vertices.
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The predictions (40) and (42) are compared with the numerical data in figure 17. The
agreement is again excellent, in particular forβ ′1, whose prediction (40) does not involve
any adjustable parameter, apart from the definition (17) of theVex.

5. Conclusions

The most salient result of this work is probably the successful use ofVex (17) to account for
most of the influence of the fracture geometry, since it gathers all the results for the various
quantities investigated in section 4. This can be summarized as follows. The finite-block
density reads (see equation (18) and figure 10)

ρ ′b = 4.82× 10−6ρ ′3.79.

The percolation threshold is (see table 1)

ρ ′c = 2.26± 0.04.

The first Betti number is given by (see figure 17)

β ′1 =
(
ρ ′

2
− 1

)
ρ ′

γ ′1 =
(
ρ ′

2
− 1

)
ρ ′ − 0.0117ρ ′3.19+ 482× 10−6ρ ′3.79.

These results were shown to hold for equal-sized regular polygons, and also forρ ′c, β
′
1 and

γ ′1 for mono- and polydisperse rectangles with moderate aspect ratios.
Since natural fracture networks are likely to have more complex size and shape

distributions, the definition (17) ofVex should be checked and possibly improved for more
general fracture populations. Of particular importance is the type of average to be performed
when fractures with different sizes and/or shapes coexist in the network. The arithmetic
average (28b) for polydisperse rectangles proved successful in the present case, but this
might be fortuitous since it was not derived by any rigorous argument. For example, an
alternative definition where the polygons areas and perimetersAp andPp are averaged prior
to estimating the product (17) does not yield satisfactory results (e.g.ρ ′c ≈ 1.5, much lower
thanρ ′c = 2.26 for the monodisperse cases).
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